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Abstract

A special class of differentiable functions on an infinite integral domain
which is not a field is introduced. Some facts about these functions are
established and the special case of Z is studied in more detail.

Introduction

In this paper we introduce classes of functions over
infinite integral domains which are not fields, called
“differentiable” or ‘“smooth’” functions, which in-
clude polynomial functions. These concepts are
based purely on the algebraic structure of the integral
domain and do not involve the concept of “limit”.
This work was inspired by a reformulation of the
definition of the derivative of a real-valued function
of areal variable at a point, in the following manner:

Letf:IR—IR be differentiable at t . €IR . Con-
sider the function

£'(t.) t=t,
(=< ) —f(t.)
i t—t, t#t,

Observe thatg [R—IR is continuous at t,, and we
can state the following well-known result.
Theorem. A necessary and sufficient condition for
f:IR — IR to be differentiable at t.€IR is that there
exists a function 8: IR-—» [R continuous at t, such that

f(t) = f(t.)+(t—1t.)g(t)

The only property of continuous functions which
enables us to give a definition of the derivative of a
real function at a point, in a unique way, is the fol-
lowing:

For no value of a€lR, different from zero, the
function

telR
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q)(t; IR—IR given by

t=t,

t=£t,

is continuous at t,. In other words the IR —algebra
of functions continuous at t, does not contain any
9’&°If we substitute this algebra by 4, ,an algebra of
functions from IR into[R subject to the following re-
stiction:

gy () ={o7

vaelR azto => W:[x°¢rﬂr.
then the algebra

&= {f:IR—IR|dgeH, 3 VtelR (1) =
f(t,)+(t—t.)g(t)}

is called the algebra of differentiable functions at t.
with respect to &L, .1f fefcan be written as

f(t) =f(t.)+(t—1.)g(1),

for some ge &1, then g(t-),which is uniquely deter-
mined by f, is called the derivative of f at t. with
respect to .. Using only algebraic operations of
IR, a suitable &.will not be uniquely determined.
But if we substitute IR by an infinite integral domain
R which is not a field, we can determine &uniquely
by using only algebraic operations of R.

The definition of differentiability has been ex-
tended to R —modules (here R is an infinite integral
domain). This extention provides us with a large
number of interesting problems which are non-trivial
even when R=7 .
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Our aim, here, is only to introduce a simple type
of functions on an infinite integral domain which is
not a field, called “differentiable’’ and to prove some
very simple basic theorems. Other matters are
treated in [1] and [2].

§ 2. Differentiable Functions

Throughout the rest of this paper R is an infinite
integral domain which is not a field. The set of all
functions from cofinite subsets of R into R will be
denoted by F., and the domain of yeF. will be
denoted byJ)(y). For A¢eRandy,z inE,yz and
y+Az are two elements of F, given by

D(yz) =Dy+4z)= D(Y) 0 D(Z)
(YZ)(H)=y(H)Z(H)

(Y+az) (u) = y(u)+ Az (n)

It is clear that with the above definitions of addition
and multiplication E is a commutative algebra over
R with the constant function ¢e:R—R, where e(A)=1
for all A€R, as the unit element. Let x be the identity
function on R, and let F.F,, and ‘X, be the following
subalgebras of F,:

F={yeRt DO) =R }s Foy={yeE. 2 Dy} »
(*)zﬁ{yfF(A)’ dyeFo,, JueR - (s} 5m [y——y(MC]
=(x——A5) yA}

Fundamental Lemma 2.1. The function y € F, de-
fined by

n#e K=A

a KEM

y(m)

is not an element of 3" .
Proof. Let }'GZA. B)é () there exists Yr € E,,» 0 €
R such that
(*9  0#-and 9(y-N9=(x— A9y;-
Since for each w#A ,(u— A)y(n)=— 67 and D(y)
is cofinite, there exists § # in R such thats §n" +
reDyy,)and (567) y, (302 1) =-61-

The last equality implies that
onlondy, (¥dir)+1=>

From this relation and the fact that R is an integral
domain we have

on [-Sn (56 + )] =1-
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* Thus 8n is invertible in R. Now the relation (**)
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and the definition of y yields

o H = A
(k= M)~y (w).(en)7Y)=
HKFA.

This relation implies that R is a field, which is a
contradiction.

Definition 2.2 For A€ R, yeF. is called differen-
tiable at A if there exists y; ¢ X, such that

y=y( A)e+(x— Ae)y;.

The set of all elements of E, differentiable at A
will be denoted by &, .
For HCR, () s the algebra of functions from
cofinite subsets of R into R, differentiable at all
points of H.

Let S, TCR, A e€R. We say that § absorbs T
with respect to A if for each u €T, there exists u’ in
R such that uu -+ A€S.

Lemma 2.3. Assume that S absorbs T with respect
to A and T absorbs R with respect to » € R and let
S=A uB. Then A or B absorbs T with respect to A .

Proof. Suppose that neither A nor B absorbs T
with respect to A Then

(T)|IneTIVUER ,, up’ + A¢AYA(JeeT I VEER,
€€ L A¢B).

Since T absorbs R, there exists «¢ R such that (ue)

& T and since S absorbs T with respect to A | there
exists B €R such that B a(ue)+ A €S. But in this
case Bou(g)+A€B or Boe(u)+A€A; which is in
contradiction with the relation (1).

Lemma 2.4. Let A absorbs B with respect to A
and B absorbs C with respect to € R Then A absorbs
C with respect to A .

The proof of the lemma is clear.

Lemma 2.5. Let ye 00 &. Assume that SCT)(y)

usD( Y}
absorbs ] )(y)—{ =} with respect to all A €] (y). If Yo
is zero then y is zero.

Proof. If y««, there exists Ae] )(y), such that y(A
=1N'# o. Then by definition there exists y; e ZAsuch
that

=ne+(x—Ae)y;

Since ) )(y)is cofinite it absorbs R—{e} with respect
to» € R. Thus by lemma (2.4) there exists an o € R
such that «n?+ A€S. So

N+ on )1(°(r\2+’\) =
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This means that n is invertible. Let z =y/n . Then
zls is zero, and

Z=c+(x— A e)yyn

Let ¢ be a non-zero element of R. By lemma (2.4)
there exists 3 € R such that B £ +XeS. Whence

ete(n LByiBe+r))=>-

This means that R is a field, which is a contradiction.

Definition 2.6. With the above notations a deriva-
tion of ST , based at X is a linear functional o offf
satisfying 1he following condition

«{(¥2) =(¥)Zz (A) 4y (A) x(2)-

Lemma 2.7. The mapping
i

ng — R
given by n\(y)=yi(A) where y=y (A)e+(x=\e)y1
is a derivation of &, based at A .

The proof of the above lemma is clear.

Assume that & ,denotes the set of all derivations
of @, based at A . Clearly &,is an R—module.

I#emma 2.8. The mapping pu—>u. n, from R into
& " is an isomorphism of R—modules.

Proof. Since q(x) 1, the mapping is clearly an
injective homomorphlsm of R—modules. On the
other hand, letDe¥, %and D(x)=u.Then for y=y(A)
€ +(x— Ae)y; we have D(y)=py1(M)=un(y). There-
fore D=D(x)n,, and the mapping is surjective.

Corollary 2.9. Let Dy,D; be two derivations of ‘gx
based at A .

Then
Di=D<= Dl(X)=D2(X)

For ye%, > —‘;—i—()\)is defined by

ROE

This is called the first order derivative of y at A .
(Note that __‘_ji( A) is uniquely determined by y
and A .) *

Theorem 2.10. Let y €<, and z € & be such that Z Y €
E. Then zye &, and ~——(Z\)U\) “’(\ (A) YA

Proof. Let z = z(y()\)e+(x Ae) z,. Then
2(y(m)= 2 (YO +(y(w)—y(A)) z,(y(K))
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2,y(\)+(r M) (y1(w)- 2 (y()))-

ie.z.y = z.y(A)e+(X-Ae)(y1.zgy). It is clear that

$1:2 ¥ €25 and (421¥) ()= (1) 2, ()
(AD-y " (n)
Theorem 2.11. Let y c&z be invertible in F-. Then

o)
=27 (v

z2=1/yedE, and %;(A)by “Wywr

Proof. Direct computation shows that
1/y = (1/yMN)e= —(x—Ae)yalyWyl ",
where y = y(N)e+(x—Ae)yi.

Remark 2.12. Let y e F- be differentiable on its
domain of definition. Define y(l) € F, as follows:

Dy

)

) =Dp).y"”

dy
3 (A)
Let y(l) be differentiable at A € R. Then we say that
y is two times differentiable at A and 4y = Y(/\)ls
called the second derivative of y at A . ]fy recurrence
we can define, for all n € IN the n-th order derivative
of y, if it exists. The O-th order derivative of y is y
itself. y is infinitely differentiable if for alln e N,y
has n-th order derivative.

Definition 2.13. Let & be the maximal subalgebra
of the R—algebra F- satisfying the following condi-
tion

¥ yveaVAe DY), 326 &, such that y=y(A)e+(x—Ae)z.

Clearly &€, contains the R—algebra of polynomial
functions and by (2.1) it is uniquely determined. Each
yeéf is called a Smooth function fromD (y) into R,
or briefly an R—smooth function. From this defini-
tion it is clear that every R—smooth function is infi-
nitely differentiable in its domain of definition.

Example 2.14. Let R be the subring of Q defined by

a
R={—1¢§'b|a,be74}.

It is clear that R is an integral domain and it is not
a field. Let #:R—R be given by

g = (1420

Assume that & is the subalgebra of E generated by
e,x, . Direct computation shows that :f¥ is a sub-
algebra of &,,. Therefore @ is a smooth function.
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Remark 2.15. We have proved that there exist un-
countable integral domains which admit non-polyno-
mial smooth functions. Recently, N. Borujerdian has
also proved that the algebra of smooth functions on
each countable integral domain which is not a field
is uncountable. But the existence of non-polynomial
smooth functions on general infinite integral domains
has not yet been proven.

§ 3. The Special Case 7

Propasition 3.1. Let y be a non-zero globally dif-
ferentiable (differentiable at each point of its do-
main) function from T) (y)C_Z into 7. Then

#{peD)ly(p)=o} <o

Proof. Let y(A)>o, and y=y()\)c+(x—Ae)y1. Then
for ne Zwe have y(N=y(A)+(N-\)y;(n).From this

equality it is clear that if 7= {pe DI Y(W)=o} =0 s
then y(A) is divisible by infinitely many distict int-
egers (1 — A ), which is absurd.

Corollary 3.2. Every globally differentiable func-
tiony from D (y) into 'z thatis bounded, is constant.

Corollary 3.3. The constant functions ¢ .7, —=+
1, are the only globally differentiable functions on
7 which have globally differentiable inverses.
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Corollary 3.4. Let y be globally differentiable.
Then 7Z —y(Z) is an infinite set or is empty.

Proposition 3.5. Let y be a Z —smooth function,
If there existsAe] )(y) such that for all ne N, y(™(A)
=o, then y=¢

Proof. Let (x—Ae)"v, be the (n—1)-th order expan-
sion of y around A€ Z. i.e.y=(x—Ae)%y,. Let AFpe
[D(y)— {A+1}]—NThen y(u+A)=pk.n ,where
keN ,andif y(p+A)#., 7 is not divisible by p.
Since for n>k we also have y(u+A)=u"ya(+A), we
have y(x+A)=.. On the other hand ) (y)-{A*1}
is an infinite set and y:(y)>7Z is zero on P (y)-
{Ax1}. Therefore by (3.1) y is zero.

Corollary 3.6. Let y be a Z -smooth function. Then
y=Constant<=py(D=.
As mentioned earlier N. Borujerdian has proved
that there exists an uncountable set of smooth func-
tions on 7Z . Among these is the following:

P L
g(A)= i apAt(A2—1)" (A2 —4)" X. .. X(A2 — n2)n
n=o —
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